Search results

Search for "fiber optics" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer films

  • Corentin Guyot,
  • Philippe Vandestrick,
  • Ingrid Marenne,
  • Olivier Deparis and
  • Michel Voué

Beilstein J. Nanotechnol. 2019, 10, 1768–1777, doi:10.3762/bjnano.10.172

Graphical Abstract
  • backscattering of light from plasmonic nanocomposites doped with AuNPs, which is problematic for fiber optics integration, e.g. in Q-switched fiber lasers. This important issue has so far not been addressed. In particular, we investigate the modifications of the scattering properties of nanocomposites induced by
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles

  • Agata Siarkowska,
  • Miłosz Chychłowski,
  • Daniel Budaszewski,
  • Bartłomiej Jankiewicz,
  • Bartosz Bartosewicz and
  • Tomasz R. Woliński

Beilstein J. Nanotechnol. 2017, 8, 2790–2801, doi:10.3762/bjnano.8.278

Graphical Abstract
  • transition temperature, thus improving the thermo- and electro-optical properties of the PLCF. Keywords: fiber optics; gold nanoparticle; liquid crystal; phase transition temperature; photonic crystal fiber; Introduction Since their discovery in 1888, liquid crystals (LCs) have attracted nonstop research
PDF
Album
Full Research Paper
Published 27 Dec 2017

Optical techniques for cervical neoplasia detection

  • Tatiana Novikova

Beilstein J. Nanotechnol. 2017, 8, 1844–1862, doi:10.3762/bjnano.8.186

Graphical Abstract
  • that cells of both regions of cervical tissue share common biochemical profiles. The obvious advantages of Raman spectroscopy include (i) no specific requirements for sample preparation, (ii) the possibility to use this technique with fiber optics for ex vivo and in vivo measurements, (iii) a high
PDF
Album
Review
Published 06 Sep 2017

Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

  • Christine Cheng and
  • Malancha Gupta

Beilstein J. Nanotechnol. 2017, 8, 1629–1636, doi:10.3762/bjnano.8.162

Graphical Abstract
  • ) array held at 31 mm above the substrates was resistively heated to 250 °C, unless otherwise stated, to thermally cleave the peroxide bond of the initiator. The deposition rate was monitored in situ via interferometry on a reference silicon wafer using a He–Ne laser (Industrial Fiber Optics, 633 nm). For
PDF
Album
Full Research Paper
Published 08 Aug 2017

Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties

  • Andrea Capasso,
  • Theodoros Dikonimos,
  • Francesca Sarto,
  • Alessio Tamburrano,
  • Giovanni De Bellis,
  • Maria Sabrina Sarto,
  • Giuliana Faggio,
  • Angela Malara,
  • Giacomo Messina and
  • Nicola Lisi

Beilstein J. Nanotechnol. 2015, 6, 2028–2038, doi:10.3762/bjnano.6.206

Graphical Abstract
  • each sample and then averaged. Optical transmittance Transmittance spectra at normal incidence have been recorded in the 400–1100 nm wavelength range by a fiber optics spectrophotometer (HR4000CG-UV-NIR model by Ocean Optics), equipped with a tungsten halogen source and connected to the sample stage by
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2015

Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensional structure

  • Angamuthuraj Chithambararaj and
  • Arumugam Chandra Bose

Beilstein J. Nanotechnol. 2011, 2, 585–592, doi:10.3762/bjnano.2.62

Graphical Abstract
  • transformation into a highly stable orthorhombic structure were confirmed by thermal studies. The optical band structure and ethanol vapor-sensing behavior were studied by means of diffuse reflectance spectroscopy (DRS) and fiber optics spectroscopy, respectively. To the best of our knowledge, this paper reports
  • for the first time the ethanol vapor-sensing mechanism with h-MoO3 by fiber optics sensor. Results and Discussion Crystal phase analysis The XRD pattern of the as-synthesized MoO3 powder is shown in Figure 1. The sample product crystallizes in the hexagonal phase of MoO3, and the diffraction peaks are
  • % reflectance), on which a fine-ground powder was pressed. The spectrum was recorded at room temperature in the wavelength range 230–700 nm at a rate of 1 nm/s. Ethanol vapor sensing was performed with a fiber optics sensor arrangement with a white light source (Model SL1, StellarNet Inc., USA with wavelength
PDF
Album
Full Research Paper
Published 14 Sep 2011
Other Beilstein-Institut Open Science Activities